Teaching particle swarm optimization through an open-loop system identification project

dc.contributor.author Paulo Moura Oliveira en
dc.contributor.author Vrancic,D en
dc.contributor.author José Boaventura en
dc.contributor.author Eduardo Pires en
dc.date.accessioned 2018-01-17T16:37:40Z
dc.date.available 2018-01-17T16:37:40Z
dc.date.issued 2014 en
dc.description.abstract The particle swarm optimization (PSO), one of the most successful natural inspired algorithms, is revisited in the context of a proposal for a new teaching experiment. The problem considered is the open-loop step identification procedure, which is studied as an optimization problem. The PSO canonical algorithm main issues addressed within the proposed open-loop step identification experience are: the swarm random initialization methodology, the population size variation, and the inertia weight selection. The teaching experience learning outcomes are stated, simulation results presented, and feedback results from students analyzed. (c) 2011 Wiley Periodicals, Inc. Comput Appl Eng Educ 22:227-237, 2014; View this article online at ; DOI en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/6775
dc.identifier.uri http://dx.doi.org/10.1002/cae.20549 en
dc.language eng en
dc.relation 5773 en
dc.relation 5777 en
dc.relation 5761 en
dc.rights info:eu-repo/semantics/embargoedAccess en
dc.title Teaching particle swarm optimization through an open-loop system identification project en
dc.type article en
dc.type Publication en
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
P-009-AZZ.pdf
Size:
2.34 MB
Format:
Adobe Portable Document Format
Description: