Wind Power Forecasting Uncertainty and Unit Commitment

dc.contributor.author Hrvoje Keko en
dc.contributor.author Leonel Magalhães Carvalho en
dc.contributor.author Ricardo Jorge Bessa en
dc.contributor.author Diego Issicaba en
dc.contributor.author Jianhui Wang en
dc.contributor.author Audun Botterud en
dc.contributor.author Vladimiro Miranda en
dc.contributor.author Jean Sumaili en
dc.date.accessioned 2017-11-17T12:48:04Z
dc.date.available 2017-11-17T12:48:04Z
dc.date.issued 2011 en
dc.description.abstract In this paper, we investigate the representation of wind power forecasting (WPF) uncertainty in the unit commitment (UC) problem. While deterministic approaches use a point forecast of wind power output, WPF uncertainty in the stochastic UC alternative is captured by a number of scenarios that include cross-temporal dependency. A comparison among a diversity of UC strategies (based on a set of realistic experiments) is presented. The results indicate that representing WPF uncertainty with wind power scenarios that rely on stochastic UC has advantages over deterministic approaches that mimic the classical models. Moreover, the stochastic model provides a rational and adaptive way to provide adequate spinning reserves at every hour, as opposed to increasing reserves to predefined, fixed margins that cannot account either for the system's costs or its assumed risks. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/3416
dc.language eng en
dc.relation 5164 en
dc.relation 4811 en
dc.relation 4882 en
dc.relation 4971 en
dc.relation 5073 en
dc.relation 208 en
dc.rights info:eu-repo/semantics/embargoedAccess en
dc.title Wind Power Forecasting Uncertainty and Unit Commitment en
dc.type article en
dc.type Publication en
Files