Predicting the secondary structure of proteins using Machine Learning algorithms

dc.contributor.author Nuno Fonseca en
dc.contributor.author Vítor Santos Costa en
dc.contributor.author Alexandre Magalhães en
dc.contributor.author Miguel de Sousa en
dc.contributor.author Vânia Guimarães en
dc.contributor.author Natacha Rosa en
dc.contributor.author Rui Camacho en
dc.contributor.author Rita Ferreira en
dc.date.accessioned 2017-11-16T14:18:44Z
dc.date.available 2017-11-16T14:18:44Z
dc.date.issued 2012 en
dc.description.abstract The functions of proteins in living organisms are related to their 3-D structure, which is known to be ultimately determined by their linear sequence of amino acids that together form these macromolecules. It is, therefore, of great importance to be able to understand and predict how the protein 3D- structure arises from a particular linear sequence of amino acids. In this paper we report the application of Machine Learning methods to predict, with high values of accuracy, the secondary structure of proteins, namely α-helices and ß-sheets, which are intermediate levels of the local structure. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/2925
dc.identifier.uri http://dx.doi.org/10.1504/IJDMB.2012.050265 en
dc.language eng en
dc.relation 5129 en
dc.relation 5129 en
dc.relation 5142 en
dc.relation 5142 en
dc.relation 5444 en
dc.relation 5444 en
dc.rights info:eu-repo/semantics/openAccess en
dc.title Predicting the secondary structure of proteins using Machine Learning algorithms en
dc.type article en
dc.type Publication en
Files