Evaluation of the Performance of Space Reduction Technique Using AC and DC Models in Transmission Expansion Problems

Thumbnail Image
Date
2016
Authors
Phillipe Vilaça Gomes
João Tomé Saraiva
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Transmission Expansion Planning (TEP) is an optimization problem that has a non-convex and combinatorial search space so that several solution algorithms may converge to local optima. Therefore, many works have been proposed to solve the TEP problem considering its relaxation or reducing its search space. In any case, relaxation and reduction approaches should not compromise the quality of the final solution. This paper aims at analyzing the performance of a search space technique using a Constructive Heuristic Algorithm (CHA) admitting that the TEP problem is then solved using a Discreet Evolutionary Particle Swarm Optimization (DEPSO). On one hand the reduction quality is performed by analyzing whether the optimal expansion routes are included in the CHA constrained set and, on the other hand, the relaxation quality of the DC model is analyzed by checking if the optimal solution obtained with it violates any constraint using the AC model. The simulations were performed using three different test systems. The results suggest that the proposed CHA provides very good results in reducing the TEP search space and that the adoption of the DC model originates several violations if the full AC model is used to model the operation of the power system.
Description
Keywords
Citation