Classification of Breast Cancer Histology Images Through Transfer Learning Using a Pre-trained Inception Resnet V2

dc.contributor.author Carlos Alexandre Ferreira en
dc.contributor.author Tânia Fernandes Melo en
dc.contributor.author Sousa,P en
dc.contributor.author Maria Inês Meyer en
dc.contributor.author Elham Shakibapour en
dc.contributor.author Costa,P en
dc.contributor.author Aurélio Campilho en
dc.contributor.other 7034 en
dc.contributor.other 7124 en
dc.contributor.other 7181 en
dc.contributor.other 6835 en
dc.contributor.other 6071 en
dc.date.accessioned 2019-03-04T12:33:02Z
dc.date.available 2019-03-04T12:33:02Z
dc.date.issued 2018 en
dc.description.abstract Breast cancer is one of the leading causes of female death worldwide. The histological analysis of breast tissue allows for the differentiation of the tissue suspected to be abnormal into four classes: normal tissue, benign tumor, in situ carcinoma and invasive carcinoma. Automatic diagnostic systems can help in that task. In this sense, this work propose a deep neural network approach using transfer learning to classify breast cancer histology images. First, the added top layers are trained and a second fine-tunning is done on some feature extraction layers that are frozen previously. The used network is an Inception Resnet V2. In order to overcome the lack of data, data augmentation is performed too. This work is a suggested solution for the ICIAR 2018 BACH-Challenge and the accuracy is 0.76 in the blind test set. © 2018, Springer International Publishing AG, part of Springer Nature. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/8291
dc.identifier.uri http://dx.doi.org/10.1007/978-3-319-93000-8_86 en
dc.language eng en
dc.rights info:eu-repo/semantics/openAccess en
dc.title Classification of Breast Cancer Histology Images Through Transfer Learning Using a Pre-trained Inception Resnet V2 en
dc.type Publication en
dc.type conferenceObject en
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
P-00N-ZM5.pdf
Size:
1.46 MB
Format:
Adobe Portable Document Format
Description: