Hybrid Genetic Algorithm for Multi-Objective Transmission Expansion Planning

dc.contributor.author Phillipe Vilaça Gomes en
dc.contributor.author João Tomé Saraiva en
dc.date.accessioned 2017-12-14T09:01:46Z
dc.date.available 2017-12-14T09:01:46Z
dc.date.issued 2016 en
dc.description.abstract This paper aims to describe a new tool to solve the Transmission Expansion Planning problem (TEP). The Non-Dominative CHA-Climbing Genetic Algorithm uses the standard blocks of Genetic Algorithms (GA) associated with an improvement of the population building block using Constructive Heuristic Algorithms (CHA) and Hill Climbing Method. TEP is a hard optimization problem because it has a non convex search space and integer and nonlinear nature, besides, the difficulty degree can be further increased if it includes more than one objective. In this work, a multi-objective TEP approach is detailed using an AC Optimal Power Flow to generate the set of Pareto solutions using the investment cost and the level of CO2 emissions, i.e. two conflicting objectives. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/4003
dc.identifier.uri http://dx.doi.org/10.1109/energycon.2016.7514131 en
dc.language eng en
dc.relation 6297 en
dc.relation 268 en
dc.rights info:eu-repo/semantics/openAccess en
dc.title Hybrid Genetic Algorithm for Multi-Objective Transmission Expansion Planning en
dc.type conferenceObject en
dc.type Publication en
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
P-00M-NY7.pdf
Size:
486.62 KB
Format:
Adobe Portable Document Format
Description: