Experimental low cost reflective type oximeter for wearable health systems

dc.contributor.author Rodrigues,EMG en
dc.contributor.author Godina,R en
dc.contributor.author Cabrita,CMP en
dc.contributor.author João Catalão en
dc.date.accessioned 2017-12-22T18:37:33Z
dc.date.available 2017-12-22T18:37:33Z
dc.date.issued 2017 en
dc.description.abstract The advent of wearable technology is fundamental to the dissemination of wearable personal health monitoring devices. Recent developments of biomedical sensors have decreased the form factor and power consumption that can be worn on a permanent basis. This paper discusses a low cost reflective photoplethysmography (PPG) system using a dedicated integrated circuit (IC) solution as the core of a wearable health monitoring device. The measurement of two physiological indicators is performed, namely the pulse rate (HR) and the blood oxygen saturation (SpO(2)). The paper analyses in depth the PPG signals sensing architecture, guaranteeing high resolution measurements due to a delta-sigma analog to digital conversion unit. Post-processing digital filter operations are implemented to enhance low noise PPGs acquisition for physiological signals extraction. A complete system design is presented and a detailed evaluation is made in a real-time processing scenario. The test platform is completed with a PC based graphics application for on-line and off-line data analysis. Minimizing power dissipation is the main challenge in,a wearable design. However, it restrains PPG signal measurement sensitivity by lowering signal quality. Using the developed prototype power consumption, studies concerning the characterization of power consumption and signal quality over various working conditions are performed. Next, a performance merit figure is proposed as the main research contribution, which addresses the power consumption and signal quality trade-off subject. It aims to be used as an analysis for trade-offs between these two conflicting design criteria. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/4852
dc.identifier.uri http://dx.doi.org/10.1016/j.bspc.2016.09.013 en
dc.language eng en
dc.relation 6689 en
dc.rights info:eu-repo/semantics/embargoedAccess en
dc.title Experimental low cost reflective type oximeter for wearable health systems en
dc.type article en
dc.type Publication en
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
P-00K-W8F.pdf
Size:
4.31 MB
Format:
Adobe Portable Document Format
Description: