A swarm intelligence-based tuning method for the sliding mode generalized predictive control

dc.contributor.author Josenalde Barbosa Oliveira en
dc.contributor.author José Boaventura en
dc.contributor.author Paulo Moura Oliveira en
dc.contributor.author Hélio Alves Freire en
dc.date.accessioned 2017-12-28T02:20:13Z
dc.date.available 2017-12-28T02:20:13Z
dc.date.issued 2014 en
dc.description.abstract This work presents an automatic tuning method for the discontinuous component of the Sliding Mode Generalized Predictive Controller (SMGPC) subject to constraints. The strategy employs Particle Swarm Optimization (PSO) to minimize a second aggregated cost function. The continuous component is obtained by the standard procedure, by Quadratic Programming (QP), thus yielding an online dual optimization scheme. Simulations and performance indexes for common process models in industry, such as nonminimum phase and time delayed systems, result in a better performance, improving robustness and tracking accuracy. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/5016
dc.identifier.uri http://dx.doi.org/10.1016/j.isatra.2014.06.007 en
dc.language eng en
dc.relation 6636 en
dc.relation 5761 en
dc.relation 5773 en
dc.relation 5810 en
dc.rights info:eu-repo/semantics/embargoedAccess en
dc.title A swarm intelligence-based tuning method for the sliding mode generalized predictive control en
dc.type article en
dc.type Publication en
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
P-009-WKK.pdf
Size:
874.16 KB
Format:
Adobe Portable Document Format
Description: