Boosting the Detection of Transposable Elements Using Machine Learning

dc.contributor.author Loureiro,T en
dc.contributor.author Rui Camacho en
dc.contributor.author Vieira,J en
dc.contributor.author Nuno Fonseca en
dc.date.accessioned 2018-01-19T11:10:40Z
dc.date.available 2018-01-19T11:10:40Z
dc.date.issued 2013 en
dc.description.abstract Transposable Elements (TE) are sequences of DNA that move and transpose within a genome. TEs, as mutation agents, are quite important for their role in both genome alteration diseases and on species evolution. Several tools have been developed to discover and annotate TEs but no single one achieves good results on all different types of TEs. In this paper we evaluate the performance of several TEs detection and annotation tools and investigate if Machine Learning techniques can be used to improve their overall detection accuracy. The results of an in silico evaluation of TEs detection and annotation tools indicate that their performance can be improved by using machine learning classifiers. © Springer International Publishing Switzerland 2013. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/7068
dc.identifier.uri http://dx.doi.org/10.1007/978-3-319-00578-2_12 en
dc.language eng en
dc.relation 5142 en
dc.relation 5444 en
dc.rights info:eu-repo/semantics/openAccess en
dc.title Boosting the Detection of Transposable Elements Using Machine Learning en
dc.type article en
dc.type Publication en
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
P-008-C11.pdf
Size:
157.78 KB
Format:
Adobe Portable Document Format
Description: