A STUDY ON THE COMPUTATIONAL COMPLEXITY OF THE BILEVEL KNAPSACK PROBLEM

dc.contributor.author Caprara,A en
dc.contributor.author Maria Margarida Carvalho en
dc.contributor.author Lodi,A en
dc.contributor.author Woeginger,GJ en
dc.date.accessioned 2018-01-22T17:22:04Z
dc.date.available 2018-01-22T17:22:04Z
dc.date.issued 2014 en
dc.description.abstract We analyze the computational complexity of three fundamental variants of the bilevel knapsack problem. All three variants are shown to be complete for the second level of the polynomial hierarchy. We also discuss the somewhat easier situation where the weight and profit coefficients in the knapsack problem are encoded in unary: two of the considered bilevel variants become solvable in polynomial time, whereas the third becomes NP-complete. Furthermore, we design a polynomial time approximation scheme for this third variant, whereas the other two variants cannot be approximated in polynomial time within any constant factor (assuming P not equal NP). en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/7222
dc.identifier.uri http://dx.doi.org/10.1137/130906593 en
dc.language eng en
dc.relation 5368 en
dc.rights info:eu-repo/semantics/embargoedAccess en
dc.title A STUDY ON THE COMPUTATIONAL COMPLEXITY OF THE BILEVEL KNAPSACK PROBLEM en
dc.type article en
dc.type Publication en
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
P-009-ND5.pdf
Size:
209.87 KB
Format:
Adobe Portable Document Format
Description: