C-BER - Indexed Articles in Journals
Permanent URI for this collection
Browse
Browsing C-BER - Indexed Articles in Journals by Issue Date
Results Per Page
Sort Options
-
ItemThe time to passage of biological and complex motion( 2012) Sandra Silva Mouta ; Jorge A. Santos ; Joan López-MolinerA significant part of human interactions occur with other human beings and not only with inanimate objects. It is important in everyday tasks to estimate the time it takes other people to reach (time to contact) or pass us (time to passage). Surprisingly, little is known about judging time to contact or time to passage of biological or other complex motions. In two experiments, rigid and non-rigid (biological, inverted, scrambled, and complex non-biological) motion conditions were compared in a time-to-passage judgment task. Subjects could judge time to passage of point-light-walker displays. However, due to relative and opponent movements of body parts, all articulated patterns conveyed a noisier looming pattern. Non-rigid stimuli were judged as passing sooner than rigid stimuli but reflected more uncertainty in the judgments as revealed by precision judgments and required longer reaction times. Our findings suggested that perceptual judgments for complex motion, including biological
-
ItemHigh-resolution hyperspectral single-pixel imaging system based on compressive sensing( 2012) Mehrdad Abolbashari ; Filipe Tiago Magalhães ; Miguel Velhote Correia ; Francisco Araújo ; Faramarz FarahiFor the first time, a high-resolution hyperspectral single-pixel imaging system based on compressive sensing is presented and demonstrated. The system integrates a digital micro-mirror device array to optically compress the image to be acquired and an optical spectrum analyzer to enable high spectral resolution. The system's ability to successfully reconstruct images with 10 pm spectral resolution is proven.
-
ItemHigh dynamic range compressive imaging: a programmable imaging system( 2012) Filipe Tiago Magalhães ; Mehrdad Abolbashari ; Miguel Velhote Correia ; Francisco Araújo ; Faramarz FarahiSome scenes and objects have a wide range of brightness that cannot be captured with a conventional camera. This limitation, which degrades the dynamic range of an imaged scene or object, is addressed by use of high dynamic range (HDR) imaging techniques. With HDR imaging techniques, images of a very broad range of intensity can be obtained with conventional cameras. Another limitation of conventional cameras is the range of wavelength that they can capture. Outside the visible wavelengths, the responsivity of conventional cameras drops; therefore, a conventional camera cannot capture images in nonvisible wavelengths. Compressive imaging is a solution for this problem. Compressive imaging reduces the number of pixels of a camera to one, so a camera can be replaced by a detector with one pixel. The range of wavelengths to which such detectors are responsive is much wider than that of a conventional camera. A combination of HDR imaging and compressive imaging is introduced and is benefit
-
ItemDevelopmental dissociation of visual dorsal stream parvo and magnocellular representations and the functional impact of negative retinotopic BOLD responses( 2013) Duarte,IC ; Cunha,G ; Castelhano,J ; Sales,F ; Reis,A ; João Paulo Cunha ; Castelo Branco,MLocalized neurodevelopmental defects provide an opportunity to study structure-function correlations in the human nervous system. This unique multimodal case report of epileptogenic dysplasia in the visual cortex allowed exploring visual function across distinct pathways in retinotopic regions and the dorsal stream, in relation to fMRI retinotopic mapping and spike triggered BOLD responses. Pre-surgical EEG/video monitoring, MRI/DTI, EEG/fMRI, PET and SPECT were performed to characterize structure/function correlations in this patient with a very early lesion onset. In addition, we included psychophysical methods (assessing parvo/konio and magnocellular pathways) and retinotopic mapping. We could identify dorsal stream impairment (with extended contrast sensitivity deficits within the input magno system contrasting with more confined parvocellular deficits) with disrupted active visual field input representations in regions neighboring the lesion. Simultaneous EEG/fMRI identified perilesional and retinotopic bilaterally symmetric BOLD deactivation triggered by interictal spikes, which matched the contralateral spread of magnocellular dysfunction revealed in the psychophysical tests. Topographic changes in retinotopic organization further suggested long term functional effects of abnormal electrical discharges during brain development. We conclude that fMRI based visual field cortical mapping shows evidence for retinotopic dissociation between magno and parvocellular function well beyond striate cortex, identifiable in high level dorsal visual representations around visual area V3A which is consistent with the effects of epileptic spike triggered negative BOLD.
-
ItemUpper limb automatisms differ quantitatively in temporal and frontal lobe epilepsies( 2013) João Paulo Cunha ; Remi,J ; Vollmar,C ; Fernandes,JM ; Gonzalez Victores,JA ; Noachtar,SWe quantitatively evaluated the localizing and lateralizing characteristics of ictal upper limb automatisms (ULAs) in patients with temporal lobe epilepsy (TLE; n = 38) and frontal lobe epilepsy (FLE; n = 20). Movement speed, extent, length, and duration of ULAs were quantitatively analyzed with motion capturing techniques. Upper limb automatisms had a larger extent (p < 0.001), covered more distance (p < 0.05), and were faster (p < 0.001) in FLE than in TLE. In TLE, the maximum speed of ULAs was higher ipsilaterally than contralaterally (173 vs. 84 pixels/s; p = 0.02), with no significant difference in FLE (511 vs. 428). The duration of ictal automatisms in relation to the total seizure duration was shorter in TLE than in FLE (median 36% vs. 63%; p < 0.001), with no difference in the absolute duration (26 s vs. 27 s). These results demonstrate that quantitative movement analysis of ULAs differentiates FLE from TLE, which may aid in the localization of the epileptogenic zone.
-
ItemDesign and characterization of a wearable macrobending fiber optic sensor for human joint angle determination( 2013) Silva,AS ; Catarino,A ; Miguel Velhote Correia ; Orlando FrazãoThe work presented here describes the development and characterization of intensity fiber optic sensor integrated in a specifically designed piece of garment to measure elbow flexion. The sensing head is based on macrobending incorporated in the garment, and the increase of curvature number was studied in order to investigate which scheme provided a good result in terms of sensitivity and repeatability. Results showed the configuration that assured a higher sensitivity (0.644 dBm/deg) and better repeatability was the one with four loops. Ultimately, this sensor can be used for rehabilitation purposes to monitor human joint angles, namely, elbow flexion on stroke survivors while performing the reach functional task, which is the most common upper-limb human gesture. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)
-
ItemE-legging for monitoring the human locomotion patterns( 2014) Catarino,A ; Rocha,AM ; Abreu,MJ ; Derogarian,F ; José Machado da Silva ; João Canas Ferreira ; Vítor Grade Tavares ; Miguel Velhote Correia ; Dias,RHuman motion capture systems help clinicians to detect and identify mobility impairments, early stages of pathologies and evaluate the effectiveness of surgical or rehabilitation intervention. Although there is a considerable number of solutions presently available, these systems are often expensive, complex, difficult to wear, and uncomfortable for the patient. With the purpose of solving the formerly mentioned problems, a new wearable locomotion data capture system for gait analysis is being developed. This system will allow the measurement of several locomotion-related parameters in a practical and non-invasive way, also reusable, that can be used by patients from light to severe impairments or disabilities. © 2013 The Textile Machinery Society of Japan.
-
ItemLow-Cost Wearable Data Acquisition for Stroke Rehabilitation: A Proof-of-Concept Study on Accelerometry for Functional Task Assessment( 2014) Salazar,AJ ; Silva,AS ; Silva,C ; Borges,CM ; Miguel Velhote Correia ; Santos,RS ; Vilas Boas,JPBackground: An increasingly aging society and consequently rising number of patients with poststroke-related neurological dysfunctions are forcing the rehabilitation field to adapt to ever-growing demands. Although clinical reasoning within rehabilitation is dependent on patient movement performance analysis, current strategies for monitoring rehabilitation progress are based on subjective time-consuming assessment scales, not often applied. Therefore, a need exists for efficient nonsubjective monitoring methods. Wearable monitoring devices are rapidly becoming a recognized option in rehabilitation for.quantitative measures. Developments in sensors, embedded technology, and smart textile are driving rehabilitation to adopt an objective, seamless, efficient, and cost-effective delivery system. This study aims to assist physiotherapists' clinical reasoning process through the incorporation of accelerometers as part of an electronic data acquisition system. Methods: A simple, low-cost, wearable device for poststroke rehabilitation progress monitoring was developed based on commercially available inertial sensors. Accelerometry data acquisition was performed for 4 first-time poststroke patients during a reach-press-return task. Results: Preliminary studies revealed acceleration profiles of stroke patients through which it is possible to quantitatively assess the functional movement, identify compensatory strategies, and help define proper movement. Conclusion: An inertial data acquisition system was designed and developed as.a low-cost option for monitoring rehabilitation. The device seeks to ease the data-gathering process by physiotherapists to complement current practices with accelerometry profiles and aid the development of quantifiable methodologies and protocols.
-
ItemAnticipatory postural adjustments during sitting reach movement in post-stroke subjects( 2014) Pereira,S ; Silva,CC ; Ferreira,S ; Silva,C ; Oliveira,N ; Santos,R ; Vilas Boas,JP ; Miguel Velhote CorreiaThe study assessed the effect of velocity of arm movement on anticipatory postural adjustments (APAs) generation in the contralateral and ipsilateral muscles of individuals with stroke in seating. Ten healthy and eight post-stroke subjects were studied in sitting. The task consisted in reaching an object placed at scapular plane and mid-sternum height at self-selected and fast velocities. Electromyography was recorded from anterior deltoid (AD), upper (UT) and lower trapezius (LT) and latissimus dorsi (LD). While kinematic analysis was used to assess peak velocity and trunk displacement. Differences were found between the timing of APAs on ipsi and contralateral LD and LT in both movement speeds and in ipsilateral UT during movement of the non-affected arm at a self-selected velocity. A delay on the contralateral LD to reach movement with the non-affected arm at fast velocity was also observed. The trunk displacement was greater in post-stroke subjects. Individuals with stroke demonstrated a delay of APAs in the muscles on both sides of the body compared to healthy subjects. The delay was observed during performance of the reaching task with the fast and self-selected velocity.
-
ItemAutomatic detection of the carotid lumen axis in B-mode ultrasound images( 2014) Rui Rocha ; Jorge Silva ; Aurélio CampilhoA new approach is introduced for the automatic detection of the lumen axis of the common carotid artery in B-mode ultrasound images. The image is smoothed using a Gaussian filter and then a dynamic programming scheme extracts the dominant paths of local minima of the intensity and the dominant paths of local maxima of the gradient magnitude with the gradient pointing downwards. Since these paths are possible estimates of the lumen axis and the far wall of a blood vessel, respectively, they are grouped together into pairs. Then, a pattern of two features is computed from each pair of paths and used as input to a linear discriminant classifier in order to select the pair of paths that correspond to the common carotid artery. The estimated lumen axis is the path of local minima of the intensity that belongs to the selected pair of paths. The proposed method is suited to real time processing, no user interaction is required and the number of parameters is minimal and easy to determine. The validation was performed using two datasets, with a total of 199 images, and has shown a success rate of 99.5% (100% if only the carotid regions for which a ground truth is available are considered). The datasets have a large diversity of images, including cases of arteries with plaque and images with heavy noise, text or other graphical markings inside the artery region.
-
ItemAn Automatic Graph-Based Approach for Artery/Vein Classification in Retinal Images( 2014) Dashtbozorg,B ; Ana Maria Mendonça ; Aurélio CampilhoThe classification of retinal vessels into artery/vein (A/V) is an important phase for automating the detection of vascular changes, and for the calculation of characteristic signs associated with several systemic diseases such as diabetes, hypertension, and other cardiovascular conditions. This paper presents an automatic approach for A/V classification based on the analysis of a graph extracted from the retinal vasculature. The proposed method classifies the entire vascular tree deciding on the type of each intersection point (graph nodes) and assigning one of two labels to each vessel segment (graph links). Final classification of a vessel segment as A/V is performed through the combination of the graph-based labeling results with a set of intensity features. The results of this proposed method are compared with manual labeling for three public databases. Accuracy values of 88.3%, 87.4%, and 89.8% are obtained for the images of the INSPIREAVR, DRIVE, and VICAVR databases, respectively. These results demonstrate that our method outperforms recent approaches for A/V classification.
-
ItemUnsupervised flow-based motion analysis for an autonomous moving system( 2014) Andry Maykol Pinto ; Miguel Velhote Correia ; António Paulo Moreira ; Paulo José CostaThis article discusses the motion analysis based on dense optical flow fields and for a new generation of robotic moving systems with real-time constraints. It focuses on a surveillance scenario where an especially designed autonomous mobile robot uses a monocular camera for perceiving motion in the environment. The computational resources and the processing-time are two of the most critical aspects in robotics and therefore, two non-parametric techniques are proposed, namely, the Hybrid Hierarchical Optical Flow Segmentation and the Hybrid Density-Based Optical Flow Segmentation. Both methods are able to extract the moving objects by performing two consecutive operations: refining and collecting. During the refining phase, the flow field is decomposed in a set of clusters and based on descriptive motion properties. These properties are used in the collecting stage by a hierarchical or density-based scheme to merge the set of clusters that represent different motion models. In addition, a model selection method is introduced. This novel method analyzes the flow field and estimates the number of distinct moving objects using a Bayesian formulation. The research evaluates the performance achieved by the methods in a realistic surveillance situation. The experiments conducted proved that the proposed methods extract reliable motion information in real-time and without using specialized computers. Moreover, the resulting segmentation is less computationally demanding compared to other recent methods and therefore, they are suitable for most of the robotic or surveillance applications.
-
ItemConnectivity patterns of pallidal DBS electrodes in focal dystonia: A diffusion tensor tractography study( 2014) Rozanski,VE ; Vollmar,C ; João Paulo Cunha ; Sérgio Miguel Tafula ; Ahmadi,SA ; Patzig,M ; Mehrkens,JH ; Boetzel,KDeep brain stimulation (DBS) of the internal pallidal segment (GPi: globus pallidus internus) is gold standard treatment for medically intractable dystonia, but detailed knowledge of mechanisms of action is still not available. There is evidence that stimulation of ventral and dorsal GPi produces opposite motor effects. The aim of this study was to analyse connectivity profiles of ventral and dorsal GPi. Probabilistic tractography was initiated from DBS electrode contacts in 8 patients with focal dystonia and connectivity patterns compared. We found a considerable difference in anterior-posterior distribution of fibres along the mesial cortical sensorimotor areas between the ventral and dorsal GPi connectivity. This finding of distinct GPi connectivity profiles further confirms the clinical evidence that the ventral and dorsal GPi belong to different functional and anatomic motor subsystems. Their involvement could play an important role in promoting clinical DBS effects in dystonia.
-
ItemMonkeys time their pauses of movement and not their movement-kinematics during a synchronization-continuation rhythmic task( 2014) Donnet,S ; Bartolo,R ; Fernandes,JM ; João Paulo Cunha ; Prado,L ; Merchant,HA critical question in tapping behavior is to understand whether the temporal control is exerted on the duration and trajectory of the downward-upward hand movement or on the pause between hand movements. In the present study, we determined the duration of both the movement execution and pauses of monkeys performing a synchronization-continuation task (SCT), using the speed profile of their tapping behavior. We found a linear increase in the variance of pause-duration as a function of interval, while the variance of the motor implementation was relatively constant across intervals. In fact, 96% of the variability of the duration of a complete tapping cycle (pause + movement) was due to the variability of the pause duration. In addition, we performed a Bayesian model selection to determine the effect of interval duration (450 -1,000 ms), serial-order (1-6 produced intervals), task phase (sensory cued or internally driven), and marker modality (auditory or visual) on the duration of the movement-pause and tapping movement. The results showed that the most important parameter used to successfully perform the SCT was the control of the pause duration. We also found that the kinematics of the tapping movements was concordant with a stereotyped ballistic control of the hand pressing the push-button. The present findings support the idea that monkeys used an explicit timing strategy to perform the SCT, where a dedicated timing mechanism controlled the duration of the pauses of movement, while also triggered the execution of fixed movements across each interval of the rhythmic sequence.
-
ItemA Flow-based Motion Perception Technique for an Autonomous Robot System( 2014) Andry Maykol Pinto ; António Paulo Moreira ; Miguel Velhote Correia ; Paulo José CostaVisual motion perception from a moving observer is the most often encountered case in real life situations. It is a complex and challenging problem, although, it can promote the arising of new applications. This article presents an innovative and autonomous robotic system designed for active surveillance and a dense optical flow technique. Several optical flow techniques have been proposed for motion perception however, most of them are too computationally demanding for autonomous mobile systems. The proposed HybridTree method is able to identify the intrinsic nature of the motion by performing two consecutive operations: expectation and sensing. Descriptive properties of the image are retrieved using a tree-based scheme and during the expectation phase. In the sensing operation, the properties of image regions are used by a hybrid and hierarchical optical flow structure to estimate the flow field. The experiments prove that the proposed method extracts reliable visual motion information in a short period of time and is more suitable for applications that do not have specialized computer devices. Therefore, the HybridTree differs from other techniques since it introduces a new perspective for the motion perception computation: high level information about the image sequence is integrated into the estimation of the optical flow. In addition, it meets most of the robotic or surveillance demands and the resulting flow field is less computationally demanding comparatively to other state-of-the-art methods.
-
ItemCo-activation of upper limb muscles during reaching in post-stroke subjects: An analysis of the contralesional and ipsilesional limbs( 2014) Silva,CC ; Sousa,A ; Pinheiro,AR ; Bourlinova,C ; Silva,A ; Silva,A ; Salazar,A ; Borges,C ; Crasto,C ; Miguel Velhote Correia ; Vilas Boas,JP ; Santos,RThe purpose of this study was to analyze the change in antagonist co-activation ratio of upper-limb muscle pairs, during the reaching movement, of both ipsilesional and contralesional limbs of post-stroke subjects. Nine healthy and nine post-stroke subjects were instructed to reach and grasp a target, placed in the sagittal and scapular planes of movement. Surface EMG was recorded from postural control and movement related muscles. Reaching movement was divided in two sub-phases, according to proximal postural control versus movement control demands, during which antagonist co-activation ratios were calculated for the muscle pairs LD/PM, PD/AD, TRIlat/BB and TRIlat/BR. Post-stroke's ipsilesional limb presented lower co-activation in muscles with an important role in postural control (LD/PM), comparing to the healthy subjects during the first sub-phase, when the movement was performed in the sagittal plane (p < 0.05). Conversely, the post-stroke's contralesional limb showed in general an increased co-activation ratio in muscles related to movement control, comparing to the healthy subjects. Our findings demonstrate that, in post-stroke subjects, the reaching movement performed with the ipsilesional upper limb seems to show co-activation impairments in muscle pairs associated to postural control, whereas the contralesional upper limb seems to have signs of impairment of muscle pairs related to movement.
-
ItemEnhancing dynamic videos for surveillance and robotic applications: The robust bilateral and temporal filter( 2014) Andry Maykol Pinto ; Paulo José Costa ; Miguel Velhote Correia ; António Paulo MoreiraOver the last few decades, surveillance applications have been an extremely useful tool to prevent dangerous situations and to identify abnormal activities. Although, the majority of surveillance videos are often subjected to different noises that corrupt structured patterns and fine edges. This makes the image processing methods even more difficult, for instance, object detection, motion segmentation, tracking, identification and recognition of humans. This paper proposes a novel filtering technique named robust bilateral and temporal (RBLT), which resorts to a spatial and temporal evolution of sequences to conduct the filtering process while preserving relevant image information. A pixel value is estimated using a robust combination of spatial characteristics of the pixel's neighborhood and its own temporal evolution. Thus, robust statics concepts and temporal correlation between consecutive images are incorporated together which results in a reliable and configurable filter formulation that makes it possible to reconstruct highly dynamic and degraded image sequences. The filtering is evaluated using qualitative judgments and several assessment metrics, for different Gaussian and Salt Pepper noise conditions. Extensive experiments considering videos obtained by stationary and non-stationary cameras prove that the proposed technique achieves a good perceptual quality of filtering sequences corrupted with a strong noise component.
-
ItemTowards Modern Cost-effective and Lightweight Augmented Reality Setups( 2015) Pádua,L ; Telmo Oliveira Adão ; David Gonçalves Narciso ; António Cunha ; Magalhães,L ; Emanuel Peres CorreiaAugmented Reality (AR) has been widely used in areas such as medicine, education, entertainment and cultural heritage to enhance activities that include (but are not limited to) teaching, training and amusement, through the completion of the real world with viewable and usually interactive virtual data (e.g. 3D models, geo-markers and labels). Despite the already confrmed AR benefts in the referred areas, many of the existing AR systems rely on heavy and obsolete hardware bundles composed of several devices and numerous cables that usually culminate in considerably expensive solutions. This issue is about to be tackled through the recent technological developments which currently enable the production of small-sized boards with remarkable capabilities - such as processing, visualization and storage - at relatively low prices. Following this line of reasoning, this paper proposes and compares fve different multi-purpose AR mobile units, running Windows or Android operating systems, having in mind low-cost and lightweight requirements and different levels of immersion: a laptop computer, two tablets, a smartphone and smartglasses. A set of tests was carried out to evaluate the proposed unit performance. Moreover, a set of users' assessments was also conducted, highlighting an overall acceptance regarding the use of the proposed units in AR applications. This paper is an extension of a previous work (Pádua et al., 2015) in which a conceptual architecture for mobile units - complying with AR requirements (including visualization, processing, location and communication) for indoor or outdoor utilization - was presented, along with a shorter set of lightweight and cost-effective AR mobile units and respective performance tests. Copyright © 2015,.
-
ItemThe grafting of a thin layer of poly(sodium styrene sulfonate) onto poly(epsilon-caprolactone) surface can enhance fibroblast behavior( 2015) Rohman,G ; Huot,S ; Carmo Vilas Boas ; Radu Bostan,G ; Castner,DG ; Migonney,VPoly(sodium styrene sulfonate) (pNaSS) was grafted onto poly(epsilon-caprolatone) (PCL) surfaces via ozonation and graft polymerization. The effect of ozonation and polymerization time, as well as the Mohr's salt concentration in the grafting solution, on the degree of grafting was investigated. The degree of grafting was determined through toluidine blue staining. The surface chemical change was characterized by attenuated total reflection Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The result demonstrated that the grafting did not induce any degradation of PCL, and that pNaSS was grafted onto PCL as a thin and covalently stable layer. Furthermore, the modified PCL surface reveals a significant increase in the metabolic activity of fibroblastic cells, as well as a better cell spreading with higher adhesion strength. Consequently, bioactivity of PCL is greatly enhanced by immobilizing a thin layer of pNaSS onto its surface. The grafting of pNaSS is a promising approach to increase the bioactivity of PCL-based materials used in tissue engineering applications, such as ligament reconstruction.
-
ItemRehab@home: A tool for home-based motor function rehabilitation( 2015) Faria,C ; Jorge Silva ; Aurélio CampilhoPurpose: This paper presents the Rehab@home system, a tool specifically developed for helping neurological patients performing rehabilitation exercises at home, without the presence of a physiotherapist. It is centred on the rehabilitation of balance and on the sit-to-stand (STS) movement. Method: Rehab@home is composed of two Wii balance boards, a webcam and a computer, and it has two main software applications: one for patients to perform rehabilitation exercises and another one for therapists to visualize the data of the exercises. During the exercises, data from the boards and the webcam are processed in order to automatically assess the correctness of movements. Results: Rehab@home provides exercises for the rehabilitation of balance (in sitting and in standing positions), and for the execution of the STS movement. It gives automatic feedback to the patient and data are saved for future analysis. The therapist is able to adapt the difficulty of the exercises to match with each patient's needs. A preliminary study with seven patients was conducted for evaluating their feedback. They appreciated using the system and felt the exercises more engaging than conventional therapy. Conclusions: Feedback from patients gives the hope that Rehab@home can become a great tool for complementing their rehabilitation process.Implications for RehabilitationRehab@home can be used at home by patients with motor deficits, without the presence of a therapist, as a complement to conventional therapy for accelerating the rehabilitation process.The system provides exercises for improving the balance and the STS movement capabilities of patients, gives automatic feedback, and saves video and load information from the movements for future analysis by the therapist.Its most important feature is adaptability: the therapist is able to tune the difficulty of the exercises for adapting them to the needs of each patient.Patients get more engaged for this type of exercises and think they can take profit from using it.