Proactive management of distribution grids with chance-constrained linearized AC OPF

No Thumbnail Available
Tiago André Soares
Ricardo Jorge Bessa
Journal Title
Journal ISSN
Volume Title
Distribution system operators (DSO) are currently moving towards active distribution grid management. One goal is the development of tools for operational planning of flexibility from distributed energy resources (DER) in order to solve potential (predicted) congestion and voltage problems. This work proposes an innovative flexibility management function based on stochastic and chance-constrained optimization that copes with forecast uncertainty from renewable energy sources (RES). Furthermore, the model allows the decision-maker to integrate its attitude towards risk by considering a trade-off between operating costs and system reliability. RES forecast uncertainty is modeled through spatial-temporal trajectories or ensembles. An AC-OPF linearization that approximates the actual behavior of the system is included, ensuring complete convexity of the problem. McCormick and big-M relaxation methods are compared to reformulate the chance-constrained optimization problem. The discussion and comparison of the proposed models is carried out through a case study based on actual generation data, where operating costs, system reliability and computer performance are evaluated.