Please use this identifier to cite or link to this item:
Title: Entropy-based discretization methods for ranking data
Authors: Cláudio Rebelo Sá
Carlos Manuel Soares
Issue Date: 2016
Abstract: Label Ranking (LR) problems are becoming increasingly important in Machine Learning. While there has been a significant amount of work on the development of learning algorithms for LR in recent years, there are not many pre-processing methods for LR Some methods, like Naive Bayes for LR and APRIORI-LR, cannot handle real-valued data directly. Conventional discretization methods used in classification are not suitable for LR problems, due to the different target variable. In this work, we make an extensive analysis of the existing methods using simple approaches. We also propose a new method called EDiRa (Entropy-based Discretization for Ranking) for the discretization of ranking data. We illustrate the advantages of the method using synthetic data and also on several benchmark datasets. The results clearly indicate that the discretization is performing as expected and also improves the results and efficiency of the learning algorithms.
metadata.dc.type: article
Appears in Collections:CESE - Articles in International Journals

Files in This Item:
File Description SizeFormat 
P-00J-ZHE.pdf507.79 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.