Digital quantum simulation of non-perturbative dynamics of open systems with orthogonal polynomials

dc.contributor.author Luís Soares Barbosa en
dc.contributor.other 5603 en
dc.date.accessioned 2025-01-13T16:53:30Z
dc.date.available 2025-01-13T16:53:30Z
dc.date.issued 2024 en
dc.description.abstract Classical non-perturbative simulations of open quantum systems' dynamics face several scalability problems, namely, exponential scaling of the computational effort as a function of either the time length of the simulation or the size of the open system. In this work, we propose the use of the Time Evolving Density operator with Orthogonal Polynomials Algorithm (TEDOPA) on a quantum computer, which we term as Quantum TEDOPA (Q-TEDOPA), to simulate nonperturbative dynamics of open quantum systems linearly coupled to a bosonic environment (continuous phonon bath). By performing a change of basis of the Hamiltonian, the TEDOPA yields a chain of harmonic oscillators with only local nearestneighbour interactions, making this algorithm suitable for implementation on quantum devices with limited qubit connectivity such as superconducting quantum processors. We analyse in detail the implementation of the TEDOPA on a quantum device and show that exponential scalings of computational resources can potentially be avoided for time-evolution simulations of the systems considered in this work. We applied the proposed method to the simulation of the exciton transport between two light-harvesting molecules in the regime of moderate coupling strength to a non-Markovian harmonic oscillator environment on an IBMQ device. Applications of the Q-TEDOPA span problems which can not be solved by perturbation techniques belonging to different areas, such as the dynamics of quantum biological systems and strongly correlated condensed matter systems. en
dc.identifier P-010-2Z5 en
dc.identifier.uri https://repositorio.inesctec.pt/handle/123456789/15246
dc.language eng en
dc.rights info:eu-repo/semantics/openAccess en
dc.title Digital quantum simulation of non-perturbative dynamics of open systems with orthogonal polynomials en
dc.type en
dc.type Publication en
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
P-010-2Z5.pdf
Size:
1.69 MB
Format:
Adobe Portable Document Format
Description: