Bin Picking Approaches Based on Deep Learning Techniques: A State-of-the-Art Survey
Bin Picking Approaches Based on Deep Learning Techniques: A State-of-the-Art Survey
dc.contributor.author | Cordeiro,A | en |
dc.contributor.author | Luís Freitas Rocha | en |
dc.contributor.author | Carlos Miguel Costa | en |
dc.contributor.author | Pedro Gomes Costa | en |
dc.contributor.author | Manuel Santos Silva | en |
dc.contributor.other | 5159 | en |
dc.contributor.other | 5364 | en |
dc.contributor.other | 5655 | en |
dc.contributor.other | 6164 | en |
dc.date.accessioned | 2023-05-08T08:11:05Z | |
dc.date.available | 2023-05-08T08:11:05Z | |
dc.date.issued | 2022 | en |
dc.description.abstract | en | |
dc.identifier | P-00W-SHC | en |
dc.identifier.uri | http://dx.doi.org/10.1109/icarsc55462.2022.9784795 | en |
dc.identifier.uri | https://repositorio.inesctec.pt/handle/123456789/13913 | |
dc.language | eng | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.title | Bin Picking Approaches Based on Deep Learning Techniques: A State-of-the-Art Survey | en |
dc.type | en | |
dc.type | Publication | en |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- P-00W-SHC.pdf
- Size:
- 2.78 MB
- Format:
- Adobe Portable Document Format
- Description: