Ensemble approaches for regression: A survey

dc.contributor.author Jorge Freire de Sousa en
dc.contributor.author João Mendes Moreira en
dc.contributor.author Carlos Manuel Soares en
dc.contributor.author Alípio Jorge en
dc.date.accessioned 2017-11-16T14:05:25Z
dc.date.available 2017-11-16T14:05:25Z
dc.date.issued 2012 en
dc.description.abstract The goal of ensemble regression is to combine several models in order to improve the prediction accuracy in learning problems with a numerical target variable. The process of ensemble learning can be divided into three phases: the generation phase, the pruning phase, and the integration phase. We discuss different approaches to each of these phases that are able to deal with the regression problem, categorizing them in terms of their relevant characteristics and linking them to contributions from different fields. Furthermore, this work makes it possible to identify interesting areas for future research. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/2760
dc.identifier.uri http://dx.doi.org/10.1145/2379776.2379786 en
dc.language eng en
dc.relation 5001 en
dc.relation 5001 en
dc.relation 5450 en
dc.relation 5450 en
dc.relation 4981 en
dc.relation 4981 en
dc.rights info:eu-repo/semantics/embargoedAccess en
dc.title Ensemble approaches for regression: A survey en
dc.type article en
dc.type Publication en
Files