Scalable Online Top-N Recommender Systems
Scalable Online Top-N Recommender Systems
dc.contributor.author | Alípio Jorge | en |
dc.contributor.author | João Marques Silva | en |
dc.contributor.author | Domingues,MarcosAurelio | en |
dc.contributor.author | João Gama | en |
dc.contributor.author | Carlos Manuel Soares | en |
dc.contributor.author | Matuszyk,Pawel | en |
dc.contributor.author | Spiliopoulou,Myra | en |
dc.date.accessioned | 2017-12-12T18:59:30Z | |
dc.date.available | 2017-12-12T18:59:30Z | |
dc.date.issued | 2017 | en |
dc.description.abstract | Given the large volumes and dynamics of data that recommender systems currently have to deal with, we look at online stream based approaches that are able to cope with high throughput observations. In this paper we describe work on incremental neighborhood based and incremental matrix factorization approaches for binary ratings, starting with a general introduction, looking at various approaches and describing existing enhancements. We refer to recent work on forgetting techniques and multidimensional recommendation. We will also focus on adequate procedures for the evaluation of online recommender algorithms. © Springer International Publishing AG 2017. | en |
dc.identifier.uri | http://repositorio.inesctec.pt/handle/123456789/3944 | |
dc.identifier.uri | http://dx.doi.org/10.1007/978-3-319-53676-7_1 | en |
dc.language | eng | en |
dc.relation | 5120 | en |
dc.relation | 5245 | en |
dc.relation | 4981 | en |
dc.relation | 5001 | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.title | Scalable Online Top-N Recommender Systems | en |
dc.type | conferenceObject | en |
dc.type | Publication | en |
Files
Original bundle
1 - 1 of 1