Scalable Online Top-N Recommender Systems

dc.contributor.author Alípio Jorge en
dc.contributor.author João Marques Silva en
dc.contributor.author Domingues,MarcosAurelio en
dc.contributor.author João Gama en
dc.contributor.author Carlos Manuel Soares en
dc.contributor.author Matuszyk,Pawel en
dc.contributor.author Spiliopoulou,Myra en
dc.date.accessioned 2017-12-12T18:59:30Z
dc.date.available 2017-12-12T18:59:30Z
dc.date.issued 2017 en
dc.description.abstract Given the large volumes and dynamics of data that recommender systems currently have to deal with, we look at online stream based approaches that are able to cope with high throughput observations. In this paper we describe work on incremental neighborhood based and incremental matrix factorization approaches for binary ratings, starting with a general introduction, looking at various approaches and describing existing enhancements. We refer to recent work on forgetting techniques and multidimensional recommendation. We will also focus on adequate procedures for the evaluation of online recommender algorithms. © Springer International Publishing AG 2017. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/3944
dc.identifier.uri http://dx.doi.org/10.1007/978-3-319-53676-7_1 en
dc.language eng en
dc.relation 5120 en
dc.relation 5245 en
dc.relation 4981 en
dc.relation 5001 en
dc.rights info:eu-repo/semantics/openAccess en
dc.title Scalable Online Top-N Recommender Systems en
dc.type conferenceObject en
dc.type Publication en
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
P-00M-EY5.pdf
Size:
316.77 KB
Format:
Adobe Portable Document Format
Description: