Interactive VPL-based global illumination on the GPU using fuzzy clustering

No Thumbnail Available
Date
2022
Authors
Colom,A
Marques,R
Luís Paulo Santos
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Physically-based synthesis of high quality imagery, including global illumination light transport phenomena, results in a significant workload, which makes interactive rendering a very challenging task. We propose a VPL-based ray tracing approach that runs entirely in the GPU and achieves interactive frame rates while handling global illumination light transport phenomena. This approach is based on clustering both shading points and VPLs and computing visibility only among clusters' representatives. A new massively parallel K-means clustering algorithm, enables efficient execution in the GPU. Rendering artifacts, that could result from the piecewise constant approximation of the VPLs/shading points visibility function introduced by the clustering, are smoothed away by resorting to an innovative approach based on fuzzy clustering and weighted interpolation of the visibility function. The effectiveness of the proposed approach is experimentally verified for a collection of scenes, with frame rates larger than 3 fps and up to 25 fps being demonstrated.(c) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Description
Keywords
Citation