Product lifecycle management in knowledge intensive collaborative environments: An application to automotive industry
Product lifecycle management in knowledge intensive collaborative environments: An application to automotive industry
Files
Date
2017
Authors
Filipe David Ferreira
José Faria
Américo Azevedo
Ana Luísa Marques
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Today, manufacturing is moving towards customer-driven and knowledge-based proactive production. Shorter product life cycles lead to increased complexity in areas such as product and process design, factory deployment and production operations. To handle this complexity, new knowledge-based methods and technologies are needed to model, simulate, optimize and monitor manufacturing systems. Product lifecycle management research tends to focus on situations that are responsive to formal analysis and modelling. However, in several domains such as knowledge intensive collaborative environments, it's not possible to model processes using formal notations. Knowledge based and collaborative process management involves a combination of structured and non-structured processes. Structured processes management can be reduced to a set of fully-defined rules leading to high efficiency but also low flexibility, whereas the management of non-structured processes is not prone to a full formalization. A combination of both structured and unstructured management approaches is required in order to achieve a successful trade-off between efficiency, flexibility and controllability. We call a process as semi-structured when it contains both structured and non-structured sub-processes leading to a flexible and efficient hybrid approach. Large enterprise information systems, impose structured and predictable workflows, while knowledge based collaborative processes are unpredictable to some extent, involving high amount of human-decision. Moreover, large enterprise information systems are not able to manage the daily ad hoc communication inherent to the knowledge-based process itself. This paper introduces a set of concepts, methods and tools of an innovative Hybrid Process Management approach validated by a real world business case in the automotive industry.