Scenario generation for electric vehicles' uncertain behavior in a smart city environment

dc.contributor.author Soares,J en
dc.contributor.author Borges,N en
dc.contributor.author Ghazvini,MAF en
dc.contributor.author Vale,Z en
dc.contributor.author Paulo Moura Oliveira en
dc.date.accessioned 2018-01-16T19:17:03Z
dc.date.available 2018-01-16T19:17:03Z
dc.date.issued 2016 en
dc.description.abstract This paper presents a framework and methods to estimate electric vehicles' possible states, regarding their demand, location and grid connection periods. The proposed methods use the Monte Carlo simulation to estimate the probability of occurrence for each state and a fuzzy logic probabilistic approach to characterize the uncertainty of electric vehicles' demand. Day-ahead and hour-ahead methodologies are proposed to support the smart grids' operational decisions. A numerical example is presented using an electric vehicles fleet in a smart city environment to obtain each electric vehicle possible states regarding their grid location. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/6500
dc.identifier.uri http://dx.doi.org/10.1016/j.energy.2016.06.011 en
dc.language eng en
dc.relation 5761 en
dc.rights info:eu-repo/semantics/embargoedAccess en
dc.title Scenario generation for electric vehicles' uncertain behavior in a smart city environment en
dc.type article en
dc.type Publication en
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
P-00K-J33.pdf
Size:
4.81 MB
Format:
Adobe Portable Document Format
Description: