Multi-source deep transfer learning for cross-sensor biometrics
Multi-source deep transfer learning for cross-sensor biometrics
dc.contributor.author | Chetak Kandaswamy | en |
dc.contributor.author | Monteiro,JC | en |
dc.contributor.author | Silva,LM | en |
dc.contributor.author | Jaime Cardoso | en |
dc.date.accessioned | 2018-01-14T20:45:36Z | |
dc.date.available | 2018-01-14T20:45:36Z | |
dc.date.issued | 2017 | en |
dc.description.abstract | Deep transfer learning emerged as a new paradigm in machine learning in which a deep model is trained on a source task and the knowledge acquired is then totally or partially transferred to help in solving a target task. In this paper, we apply the source-target-source methodology, both in its original form and an extended multi-source version, to the problem of cross-sensor biometric recognition. We tested the proposed methodology on the publicly available CSIP image database, achieving state-of-the-art results in a wide variety of cross-sensor scenarios. | en |
dc.identifier.uri | http://repositorio.inesctec.pt/handle/123456789/6076 | |
dc.identifier.uri | http://dx.doi.org/10.1007/s00521-016-2325-5 | en |
dc.language | eng | en |
dc.relation | 3889 | en |
dc.relation | 5808 | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.title | Multi-source deep transfer learning for cross-sensor biometrics | en |
dc.type | article | en |
dc.type | Publication | en |
Files
Original bundle
1 - 1 of 1