Anosov Diffeomorphisms and -Tilings

dc.contributor.author João Paulo Almeida en
dc.contributor.author Alberto Pinto en
dc.date.accessioned 2018-01-15T12:17:10Z
dc.date.available 2018-01-15T12:17:10Z
dc.date.issued 2016 en
dc.description.abstract We consider a toral Anosov automorphism G(gamma) : T-gamma --> T-gamma given by G(gamma) (x, y) = (ax + y, x) in the < v, w > base, where , a is an element of N\{1}, gamma = 1/(a + 1/(a + 1/...)), v = (gamma, 1) and w = (-1, gamma) in the canonical base of R-2 and T-gamma = R-2 / (vZ x wZ). We introduce the notion of gamma-tilings to prove the existence of a one-to-one correspondence between (i) marked smooth conjugacy classes of Anosov diffeomorphisms, with invariant measures absolutely continuous with respect to the Lebesgue measure, that are in the isotopy class of G(gamma); (ii) affine classes of gamma-tilings; and (iii) gamma-solenoid functions. Solenoid functions provide a parametrization of the infinite dimensional space of the mathematical objects described in these equivalences. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/6131
dc.identifier.uri http://dx.doi.org/10.1007/s00220-016-2677-9 en
dc.language eng en
dc.relation 5737 en
dc.relation 5682 en
dc.rights info:eu-repo/semantics/openAccess en
dc.title Anosov Diffeomorphisms and -Tilings en
dc.type article en
dc.type Publication en
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
P-00K-JP3.pdf
Size:
1.39 MB
Format:
Adobe Portable Document Format
Description: