Edge AI-Based Tree Trunk Detection for Forestry Monitoring Robotics

dc.contributor.author Daniel Queirós Silva en
dc.contributor.author Filipe Neves Santos en
dc.contributor.author Vitor Manuel Filipe en
dc.contributor.author Armando Sousa en
dc.contributor.author Paulo Moura Oliveira en
dc.contributor.other 5152 en
dc.contributor.other 5761 en
dc.contributor.other 8276 en
dc.contributor.other 5843 en
dc.contributor.other 5552 en
dc.date.accessioned 2023-05-04T09:39:15Z
dc.date.available 2023-05-04T09:39:15Z
dc.date.issued 2022 en
dc.description.abstract <jats:p>Object identification, such as tree trunk detection, is fundamental for forest robotics. Intelligent vision systems are of paramount importance in order to improve robotic perception, thus enhancing the autonomy of forest robots. To that purpose, this paper presents three contributions: an open dataset of 5325 annotated forest images; a tree trunk detection Edge AI benchmark between 13 deep learning models evaluated on four edge-devices (CPU, TPU, GPU and VPU); and a tree trunk mapping experiment using an OAK-D as a sensing device. The results showed that YOLOR was the most reliable trunk detector, achieving a maximum F1 score around 90% while maintaining high scores for different confidence levels; in terms of inference time, YOLOv4 Tiny was the fastest model, attaining 1.93 ms on the GPU. YOLOv7 Tiny presented the best trade-off between detection accuracy and speed, with average inference times under 4 ms on the GPU considering different input resolutions and at the same time achieving an F1 score similar to YOLOR. This work will enable the development of advanced artificial vision systems for robotics in forestry monitoring operations.</jats:p> en
dc.identifier P-00X-G2B en
dc.identifier.uri http://dx.doi.org/10.3390/robotics11060136 en
dc.identifier.uri https://repositorio.inesctec.pt/handle/123456789/13713
dc.language eng en
dc.rights info:eu-repo/semantics/openAccess en
dc.title Edge AI-Based Tree Trunk Detection for Forestry Monitoring Robotics en
dc.type en
dc.type Publication en
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
P-00X-G2B.pdf
Size:
14.19 MB
Format:
Adobe Portable Document Format
Description: