Towards an Auto-Associative Topology State Estimator

dc.contributor.author Krstulovic,J en
dc.contributor.author Vladimiro Miranda en
dc.contributor.author Simoes Costa,AJAS en
dc.contributor.author Jorge Correia Pereira en
dc.date.accessioned 2018-01-15T11:29:11Z
dc.date.available 2018-01-15T11:29:11Z
dc.date.issued 2013 en
dc.description.abstract This paper presents a model for breaker status identification and power system topology estimation based on a mosaic of local auto-associative neural networks. The approach extracts information from values of the analog electric variables and allows the recovery of missing sensor signals or the correction of erroneous data about breaker status. The results are confirmed by extensive tests conducted on an IEEE benchmark network. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/6115
dc.identifier.uri http://dx.doi.org/10.1109/tpwrs.2012.2236656 en
dc.language eng en
dc.relation 208 en
dc.relation 1809 en
dc.rights info:eu-repo/semantics/openAccess en
dc.title Towards an Auto-Associative Topology State Estimator en
dc.type article en
dc.type Publication en
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
P-006-8JP.pdf
Size:
1.12 MB
Format:
Adobe Portable Document Format
Description: