CEGI - Indexed Articles in Conferences
Permanent URI for this collection
Browse
Recent Submissions
1 - 5 of 89
-
ItemAn intercontinental replenishment problem: A hybrid approach( 2018)This work addresses a case study in an intercontinental supply chain. The problem emerges in a company in Angola dedicated to the trade of consumable goods for construction building and industrial maintenance. The company in Angola sends the replenishment needs to a Portuguese company, which takes the decision of which products and in which quantities will be sent by shipping container to the company in Angola. The replenishment needs include the list of products that reached the corresponding reorder point. The decision of which products and in which quantity should take into consideration a set of practical constraints: the maximum weight of the cargo, the maximum volume the cargo and financial constraints related with the minimum value that guarantees the profitability of the business and a maximum value associated with shipping insurance. A 2-stage hybrid method is proposed. In the first stage, an integer linear programming model is used to select the products that maximise the sales potential. In the second stage, a Container Loading Algorithm is used to effectively pack the selected products in the shipping container ensuring the geometrical constraints, and safety constraints such as weight limit and stability. A new set of problem instances was generated with the 2DCPackGen problem generator, using as inputs the data collected in the company. Computational results for the algorithm are presented and discussed. Good results were obtained with the solution approach proposed, with an average occupation ratio of 92% of the container and an average gap of 4% for the solution of the integer linear programming model. © Springer International Publishing AG 2018.
-
ItemThe two-dimensional strip packing problem: What matters?( 2018)This paper presents an exploratory approach to study and identify the main characteristics of the two-dimensional strip packing problem (2D-SPP). A large number of variables was defined to represent the main problem characteristics, aggregated in six groups, established through qualitative knowledge about the context of the problem. Coefficient correlation are used as a quantitative measure to validate the assignment of variables to groups. A principal component analysis (PCA) is used to reduce the dimensions of each group, taking advantage of the relations between variables from the same group. Our analysis indicates that the problem can be reduced to 19 characteristics, retaining most part of the total variance. These characteristics can be used to fit regression models to estimate the strip height necessary to position all items inside the strip. © Springer International Publishing AG 2018.
-
ItemConsistent Consolidation Strategies in Grocery Retail Distribution( 2019)In the food retail sector, maintaining the food quality across the supply chain is of vital importance. The quality of the products is dependent on its storage and transportation conditions and this peculiarity increases the supply chain complexity relatively to other types of retailers. Actually, in this industry there are three types of food supply chains: frozen, chilled and ambient. Moreover, food retailers run different store formats, of different sizes, assortments and sales volume. In this study we research the trade-off between consolidating a range of products in order to perform direct deliveries to the stores versus performing separate delivery routes for products with different transportation requirements. A new consistency dimension is proposed regarding the periodicity that a consolidation strategy is implemented. The aim of this paper is to define a consolidation strategy for the delivery mode planning that allows to smooth the complexity of grocery retail operations. A three-step approach is proposed to tackle a real size problem in a case-study with a major Portuguese grocery retailer. By changing the consolidation strategy with a complete consistent plan the company could reach annual savings of around 4%. © 2019, Springer Nature Switzerland AG.
-
ItemUnderstanding complexity in a practical combinatorial problem using mathematical programming and constraint programming( 2018)Optimization problems that are motivated by real-world settings are often complex to solve. Bridging the gap between theory and practice in this field starts by understanding the causes of complexity of each problem and measuring its impact in order to make better decisions on approaches and methods. The Job-Shop Scheduling Problem (JSSP) is a well-known complex combinatorial problem with several industrial applications. This problem is used to analyse what makes some instances difficult to solve for a commonly used solution approach – Mathematical Integer Programming (MIP) – and to compare the power of an alternative approach: Constraint Programming (CP). The causes of complexity are analysed and compared for both approaches and a measure of MIP complexity is proposed, based on the concept of load per machine. Also, the impact of problem-specific global constraints in CP modelling is analysed, making proof of the industrial practical interest of commercially available CP models for the JSSP. © Springer International Publishing AG 2018.
-
ItemA dynamic programming approach for integrating dynamic pricing and capacity decisions in a rental context( 2018)Car rental companies have the ability and potential to integrate their dynamic pricing decisions with their capacity decisions. Pricing has a significant impact on demand, while capacity, which translates fleet size, acquisition planning and fleet deployment throughout the network, can be used to meet this price-sensitive demand. Dynamic programming has been often used to tackle dynamic pricing problems and also to deal with similar integrated problems, yet with some significant differences as far as the inventory depletion and replenishment are considered. The goal of this work is to understand what makes the car rental problem different and hinders the application of more common methods. To do so, a discrete dynamic programming framework is proposed, with two different approaches to calculate the optimal-value function: one based on a Mixed Integer Non Linear Program (MINLP) and one based on a Constraint Programming (CP) model. These two approaches are analyzed and relevant insights are derived regarding the (in)ability of discrete dynamic programming to effectively tackle this problem within a rental context when realistically sized instances are considered. © Springer International Publishing AG 2018.