Many-objective optimization with corner-based search

dc.contributor.author Hélio Alves Freire en
dc.contributor.author Paulo Moura Oliveira en
dc.contributor.author Eduardo Pires en
dc.contributor.author Maximino Bessa en
dc.date.accessioned 2018-01-16T10:17:33Z
dc.date.available 2018-01-16T10:17:33Z
dc.date.issued 2015 en
dc.description.abstract The performance of multi-objective evolutionary algorithms can severely deteriorate when applied to problems with 4 or more objectives, called many-objective problems. For Pareto dominance based techniques, available information about some optimal solutions can be used to improve their performance. This is the case of corner solutions. This work considers the behaviour of three multi-objective algorithms [Non-dominated sorting genetic algorithm (NSGA-II), Speed-constrained multi-objective particle swarm optimization (SMPSO) and generalized differential evolution (GDE3)] when corner solutions are inserted into the population at different evolutionary stages. The problem of finding corner solutions is addressed by proposing a new algorithm based in multi-objective particle swarm optimization (MOPSO). Results concerning the behaviour of the aforementioned algorithms in five benchmark problems (DTLZ1-5) and respective analysis are presented. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/6258
dc.identifier.uri http://dx.doi.org/10.1007/s12293-015-0151-4 en
dc.language eng en
dc.relation 5810 en
dc.relation 5095 en
dc.relation 5761 en
dc.relation 5777 en
dc.rights info:eu-repo/semantics/embargoedAccess en
dc.title Many-objective optimization with corner-based search en
dc.type article en
dc.type Publication en
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
P-00F-K0A.pdf
Size:
843.8 KB
Format:
Adobe Portable Document Format
Description: