Discovering a taste for the unusual: exceptional models for preference mining

dc.contributor.author de Sa,CR en
dc.contributor.author Knobbe,A en
dc.contributor.author Carlos Manuel Soares en
dc.contributor.author Alípio Jorge en
dc.contributor.author Paulo Jorge Azevedo en
dc.contributor.author Duivesteijn,W en
dc.contributor.other 4981 en
dc.contributor.other 5606 en
dc.contributor.other 5001 en
dc.date.accessioned 2019-12-16T11:17:54Z
dc.date.available 2019-12-16T11:17:54Z
dc.date.issued 2018 en
dc.description.abstract Exceptional preferences mining (EPM) is a crossover between two subfields of data mining: local pattern mining and preference learning. EPM can be seen as a local pattern mining task that finds subsets of observations where some preference relations between labels significantly deviate from the norm. It is a variant of subgroup discovery, with rankings of labels as the target concept. We employ several quality measures that highlight subgroups featuring exceptional preferences, where the focus of what constitutes ‘exceptional’ varies with the quality measure: two measures look for exceptional overall ranking behavior, one measure indicates whether a particular label stands out from the rest, and a fourth measure highlights subgroups with unusual pairwise label ranking behavior. We explore a few datasets and compare with existing techniques. The results confirm that the new task EPM can deliver interesting knowledge. © 2018 The Author(s) en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/10529
dc.identifier.uri http://dx.doi.org/10.1007/s10994-018-5743-z en
dc.language eng en
dc.rights info:eu-repo/semantics/openAccess en
dc.title Discovering a taste for the unusual: exceptional models for preference mining en
dc.type Publication en
dc.type article en
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
P-00P-1D0.pdf
Size:
1.55 MB
Format:
Adobe Portable Document Format
Description: