CRAS - Indexed Articles in Journals
Permanent URI for this collection
Browse
Browsing CRAS - Indexed Articles in Journals by Author "5158"
Results Per Page
Sort Options
-
ItemA data-driven particle filter for terrain based navigation of sensor-limited autonomous underwater vehicles( 2019) Aníbal Matos ; Melo,J ; 5158
-
ItemMARESye: A hybrid imaging system for underwater robotic applications( 2020) Aníbal Matos ; Andry Maykol Pinto ; 5446 ; 5158This article presents an innovative hybrid imaging system that provides dense and accurate 3D information from harsh underwater environments. The proposed system is called MARESye and captures the advantages of both active and passive imaging methods: multiple light stripe range (LSR) and a photometric stereo (PS) technique, respectively. This hybrid approach fuses information from these techniques through a data-driven formulation to extend the measurement range and to produce high density 3D estimations in dynamic underwater environments. This hybrid system is driven by a gating timing approach to reduce the impact of several photometric issues related to the underwater environments such as, diffuse reflection, water turbidity and non-uniform illumination. Moreover, MARESye synchronizes and matches the acquisition of images with sub-sea phenomena which leads to clear pictures (with a high signal-to-noise ratio). Results conducted in realistic environments showed that MARESye is able to provide reliable, high density and accurate 3D data. Moreover, the experiments demonstrated that the performance of MARESye is less affected by sub-sea conditions since the SSIM index was 0.655 in high turbidity waters. Conventional imaging techniques obtained 0.328 in similar testing conditions. Therefore, the proposed system represents a valuable contribution for the inspection of maritime structures as well as for the navigation procedures of autonomous underwater vehicles during close range operations.
-
ItemA mosaicking technique for object identification in underwater environments( 2019) Alexandra Nunes ; Ana Gaspar ; Andry Maykol Pinto ; Aníbal Matos ; 5446 ; 6869 ; 6868 ; 5158Purpose: This paper aims to present a mosaicking method for underwater robotic applications, whose result can be provided to other perceptual systems for scene understanding such as real-time object recognition. Design/methodology/approach: This method is called robust and large-scale mosaicking (ROLAMOS) and presents an efficient frame-to-frame motion estimation with outlier removal and consistency checking that maps large visual areas in high resolution. The visual mosaic of the sea-floor is created on-the-fly by a robust registration procedure that composes monocular observations and manages the computational resources. Moreover, the registration process of ROLAMOS aligns the observation to the existing mosaic. Findings: A comprehensive set of experiments compares the performance of ROLAMOS to other similar approaches, using both data sets (publicly available) and live data obtained by a ROV operating in real scenes. The results demonstrate that ROLAMOS is adequate for mapping of sea-floor scenarios as it provides accurate information from the seabed, which is of extreme importance for autonomous robots surveying the environment that does not rely on specialized computers. Originality/value: The ROLAMOS is suitable for robotic applications that require an online, robust and effective technique to reconstruct the underwater environment from only visual information. © 2018, Emerald Publishing Limited.
-
ItemA Safety Monitoring Model for a Faulty Mobile Robot( 2018) Andry Maykol Pinto ; Leite,A ; Aníbal Matos ; 5158 ; 5446The continued development of mobile robots (MR) must be accompanied by an increase in robotics' safety measures. Not only must MR be capable of detecting and diagnosing faults, they should also be capable of understanding when the dangers of a mission, to themselves and the surrounding environment, warrant the abandonment of their endeavors. Analysis of fault detection and diagnosis techniques helps shed light on the challenges of the robotic field, while also showing a lack of research in autonomous decision-making tools. This paper proposes a new skill-based architecture for mobile robots, together with a novel risk assessment and decision-making model to overcome the difficulties currently felt in autonomous robot design.
-
ItemSimultaneous Underwater Navigation and Mapping( 2019) Aníbal Matos ; Ana Gaspar ; 5158 ; 6868The use of underwater autonomous vehicles has been growing, allowing the performance of tasks that cause inherent risks to Human, namely in inspection processes near to structures. With growth in usage of systems with autonomous navigation, visual acquisition methods have also gotten more developed because, they have appealing cost and they also show interesting results when operate at a short distance. It is possible to improve the quality of navigation through visual SLAM techniques which can map and locate simultaneously and its key aspect is the detection of revisited areas. These techniques are not usually applied to underwater scenarios and, therefore, its performance in environment is unknown. The paper presents a more reliable navigation system for underwater vehicles, resorting to some visual SLAM techniques from literature. The results, conducted in a realistic scenario, demonstrated the ability of the system to be applied to underwater environment.
-
ItemThree-Dimensional Mapping in Underwater Environment( 2019) Alexandra Nunes ; Aníbal Matos ; 5158 ; 6869Autonomous underwater vehicles are applied in diverse fields, namely in tasks that are risky for human beings to perform, as optical inspection for the purpose of structures quality control. Optical sensors are more appealing cost and they supply a larger quantity of data. Lasers can be used to reconstruct structures in three dimensions, along with cameras, which create a faithful representation of the environment. However, in this context a visual approach was used and the paper presents a method that can put together the three-dimensional information that has been harvested over time, combining also RGB information for surface reconstruction. The map construction follows the motion estimated by a odometry method previously selected from the literature. Experiments conducted using real scenario show that the proposed solution is able to provide a reliable map for objects and even the seafloor.
-
ItemTracking multiple Autonomous Underwater Vehicles( 2019) Aníbal Matos ; Melo,J ; 5158In this paper we present a novel method for the acoustic tracking of multiple Autonomous Underwater Vehicles. While the problem of tracking a single moving vehicle has been addressed in the literature, tracking multiple vehicles is a problem that has been overlooked, mostly due to the inherent difficulties on data association with traditional acoustic localization networks. The proposed approach is based on a Probability Hypothesis Density Filter, thus overcoming the data association problem. Our tracker is able not only to successfully estimate the positions of the vehicles, but also their velocities. Moreover, the tracker estimates are labelled, thus providing a way to establish track continuity of the targets. Using real word data, our method is experimentally validated and the performance of the tracker is evaluated. © 2018 Springer Science+Business Media, LLC, part of Springer Nature
-
ItemUrban@CRAS dataset: Benchmarking of visual odometry and SLAM techniques( 2018) Ana Gaspar ; Aníbal Matos ; Andry Maykol Pinto ; Alexandra Nunes ; 6868 ; 5446 ; 5158 ; 6869