CAP - Indexed Articles in Journals
Permanent URI for this collection
Browse
Browsing CAP - Indexed Articles in Journals by Author "6407"
Results Per Page
Sort Options
-
ItemAddressing the Fabrication Difficulties of Femtosecond Laser Written Surface Waveguides for Enhanced Evanescent Coupling( 2019) Vítor Oliveira Amorim ; João Miguel Maia ; Viveiros,D ; Marques,PVS ; 6407 ; 6596In this work, the fabrication of optical waveguides embedded in fused silica (Suprasil1) and boro-aluminosilicate glass (Eagle2000) is demonstrated with femtosecond laser direct writing, as well as their suitability to be brought to the surface, through wet etching, for enhanced evanescent coupling with the external dielectric medium. Fused silica demonstrated to be inappropriate in this particular application, as the guiding region is at the bottom of the induced modification, creating a barrier between the guided mode and the substrate’s boundary. Furthermore, the existence of nanogratings meant that, upon contact of the top of the induced modification with the substrate’s boundary, the waveguide is quickly etched. Eagle2000 demonstrated to be superior to fused silica due to its characteristic modification cross-section and absence of nanogratings, which allowed the placement of the guiding region as close to the substrate’s surface as required. However, surface roughness arising from the creation of insoluble products in the HF solution was found. The addition of HCl to dissolve these products was implemented.
-
ItemFemtosecond laser direct written off-axis fiber Bragg gratings for sensing applications( 2020) Carlos Duarte Viveiros ; Vítor Oliveira Amorim ; João Miguel Maia ; Susana Oliveira Silva ; Orlando Frazão ; Pedro Jorge ; Fernandes,LA ; Paulo Vicente Marques ; 3565 ; 4061 ; 4287 ; 4678 ; 5872 ; 6407 ; 6596First order off-axis fiber Bragg gratings (FBGs) were fabricated in a standard single mode fiber (SMF-28e) through femtosecond laser direct writing. A minimum offset distance between the grating and core center of 2.5 µm was found to create a multimode section, which supports two separate fiber modes (LP0,1 and LP1,1), each split into two degenerate polarization modes. The resulting structure breaks the cylindrical symmetry of the fiber, introducing birefringence (˜10-4) resulting in a polarization dependent Bragg wavelength for each mode. Based on the modal and birefringence behavior, three off-axis FBGs were fabricated with 3.0, 4.5 and 6.0 µm offsets from the core center, and then characterized in strain, temperature, and curvature. The tested off-axis FBGs exhibited a similar strain sensitivity of ~1.14 pm/µ? and a temperature sensitivity of ~12 pm/C. The curvature and orientation angle were simultaneously monitored by analyzing the intensity fluctuation and the wavelength shift of the LP1,1 Bragg resonance. A maximum curvature sensitivity of 0.53 dB/m-1 was obtained for the off-axis FBG with a 3.0 µm offset. © 2020 Elsevier Ltd
-
ItemFemtosecond laser direct written off-axis fiber Bragg gratings for sensing applications( 2020) Carlos Duarte Viveiros ; Vítor Oliveira Amorim ; João Miguel Maia ; Susana Oliveira Silva ; Orlando Frazão ; Pedro Jorge ; Fernandes,LA ; Paulo Vicente Marques ; 3565 ; 4061 ; 4287 ; 4678 ; 5872 ; 6407 ; 6596First order off-axis fiber Bragg gratings (FBGs) were fabricated in a standard single mode fiber (SMF-28e) through femtosecond laser direct writing. A minimum offset distance between the grating and core center of 2.5 µm was found to create a multimode section, which supports two separate fiber modes (LP0,1 and LP1,1), each split into two degenerate polarization modes. The resulting structure breaks the cylindrical symmetry of the fiber, introducing birefringence (˜10-4) resulting in a polarization dependent Bragg wavelength for each mode. Based on the modal and birefringence behavior, three off-axis FBGs were fabricated with 3.0, 4.5 and 6.0 µm offsets from the core center, and then characterized in strain, temperature, and curvature. The tested off-axis FBGs exhibited a similar strain sensitivity of ~1.14 pm/µ? and a temperature sensitivity of ~12 pm/C. The curvature and orientation angle were simultaneously monitored by analyzing the intensity fluctuation and the wavelength shift of the LP1,1 Bragg resonance. A maximum curvature sensitivity of 0.53 dB/m-1 was obtained for the off-axis FBG with a 3.0 µm offset. © 2020 Elsevier Ltd
-
ItemFemtosecond Laser Micromachining of Fabry-Pérot Interferometers for Magnetic Field Sensing( 2019) João Miguel Maia ; Vítor Oliveira Amorim ; Viveiros,D ; Marques,PVS ; 6407 ; 6596Fs-laser micromachining is a high precision fabrication technique that can be used to write novel three-dimensional structures, depending on the nature of light-matter interaction. In fused silica, the material modification can lead to (i) an increase of the refractive index around the focal volume, resulting in the formation of optical circuits, or (ii) an enhancement of the etch rate of the laser-affected zones relative to the pristine material, leading to a selective and anisotropic etching reaction that enables fabrication of microfluidic systems. Here, both effects are combined to fabricate a Fabry-Pérot interferometer, where optical waveguides and microfluidic channels are integrated monolithically in a fused silica chip. By filling the channel with a magnetic fluid whose refractive index changes with an external magnetic field, the device can be used as a magnetic field sensor. A linear sensitivity of -0.12 nm/mT is obtained in the 5.0±0.5 to 33.0±0.5 mT range, with the field being applied parallel to the light propagation direction.
-
ItemInscription of surface waveguides in glass by femtosecond laser writing for enhanced evanescent wave overlap( 2020) Vítor Oliveira Amorim ; João Miguel Maia ; Carlos Duarte Viveiros ; Paulo Vicente Marques ; 4287 ; 6596 ; 5872 ; 6407Near-surface optical waveguides were fabricated in alkaline earth boro-aluminosilicate glass (Eagle2000), by femtosecond laser direct writing, using two distinct approaches. First, the capability of directly inscribing optical waveguides close to the surface was tested, and then, compared to the adoption of post writing wet etching to bring to the surface waveguides inscribed at greater depths. Laser ablation was found to limit the minimum surface to core center distance to 6.5 mu m in the first method, with anisotropic wet etching limiting the latter to 3 mu m without any surface deformation; smaller separations can be achieved at the cost of the planar surface topography. Furthermore, the waveguide's cross-section was seen to vary for laser inscription nearing the surface, observations that were also corroborated by its distinct guiding characteristics when compared to the adoption of post writing wet etching. The spectral analysis (in the 500-1700 nm range) also evidenced an increase in insertion loss for longer wavelengths and smaller surface to core center separations, caused, most likely, by coupling loss due to the interaction between the propagating mode and the surface. Different lengths of waveguide exposed to the surface were also tested, revealing that scattering loss due to surface roughness is not an issue at the centimeter scale.
-
ItemIntensity-modulated refractometer based on mode-mismatch in surface waveguides inscribed by femtosecond laser direct writing( 2021) Vítor Oliveira Amorim ; Carlos Duarte Viveiros ; João Miguel Maia ; Paulo Vicente Marques ; 6407 ; 6596 ; 4287 ; 5872Optical waveguides were fabricated at the surface of Eagle2000 glass substrates, using femtosecond laser direct writing and wet etching, and their potential as intensity-modulated refractometers was assessed. Through the analysis of their broadband spectral response to different refractive index oils, we observed that mode mismatch is present when the guided mode reaches the surface of the substrate and interacts with the external medium, thus enabling the use of such optical waveguides in refractive index sensing. Refractive indices equal to or greater than that of the substrate also induced a coupling mechanism that was shown not to be suitable in these devices. The device's wavelength of operation was found to be tunable by controlling the distance between the surface and the center of the optical waveguide. However, the sensitivity was seen to diminish by increasing the latter, being nonexistent for distances greater than 5.5 mu m. In this study, the maximum sensitivity values were found for a surface to core center distance between 1 and 2 mu m, in the biological range, and 2.5 to 3 mu m, for a refractive index nearing that of the substrate. Accordingly, maximum sensitivities of approximate to 25 dB/RIU and approximate to 1200 dB/RIU were found between 1.300 < n(D)(25)degrees(C) < 1.400 and 1.490 < n(D)(25)degrees(C) < 1.500, respectively.
-
ItemLoss Mechanisms of Optical Waveguides Inscribed in Fused Silica by Femtosecond Laser Direct Writing( 2019) Vítor Oliveira Amorim ; João Miguel Maia ; Carlos Duarte Viveiros ; Paulo Vicente Marques ; 4287 ; 5872 ; 6407 ; 6596
-
ItemMach-Zehnder interferometer-based evanescent refractometer inscribed at the surface of Eagle2000 by femtosecond laser writing( 2021) Vítor Oliveira Amorim ; João Miguel Maia ; Carlos Duarte Viveiros ; Paulo Vicente Marques ; 4287 ; 5872 ; 6407 ; 6596
-
ItemMagnetic field sensors in fused silica fabricated by femtosecond laser micromachining( 2020) João Miguel Maia ; Vítor Oliveira Amorim ; Carlos Duarte Viveiros ; Paulo Vicente Marques ; 4287 ; 5872 ; 6407 ; 6596
-
ItemMass Producible Low-Loss Broadband Optical Waveguides in Eagle2000 by Femtosecond Laser Writing( 2019) Vítor Oliveira Amorim ; Carlos Duarte Viveiros ; João Miguel Maia ; Paulo Vicente Marques ; 4287 ; 5872 ; 6407 ; 6596Optical waveguides were fabricated in alkaline earth boro-aluminosilicate glass, by femtosecond laser direct writing, with varying pulse energy and scan velocity. A spectral characterization, from 500 nm to 1700 nm, was made in order to determine their losses and understand its dependence on the processing parameters. Three major loss mechanisms were identified. At longer wavelengths, loss is mainly due to weak coupling. On the other hand, the behavior at shorter wavelengths is governed by propagation loss due to Rayleigh scattering, which was shown to be practically eliminated (& x003C; 0.05 dB $\cdot$ cm $<^>{-1} {\cdot }\,\,\mu \text{m}<^>{4}$ ) at higher scan velocities. Bulk absorption was also found to have an influence in the propagation losses at higher wavelengths. The combination of intermediate pulse energies (between 125-250 nJ) and high scan velocities (above 6 cm/s) allowed the fabrication of optical waveguides offering low losses across the entire range of wavelengths tested, facilitating applications that require larger wavelength working bands. Furthermore, since optimal fabrication conditions are achieved at higher scanning velocities, mass production with reduced fabrication times can be achieved.
-
ItemMonolithic Add–Drop Multiplexers in Fused Silica Fabricated by Femtosecond Laser Direct Writing( 2017) Vítor Oliveira Amorim ; João Miguel Maia ; Daniel Alexandre ; Paulo Vicente Marques ; 4382 ; 6407 ; 6596 ; 4287
-
ItemOptimization of Broadband Y-Junction Splitters in Fused Silica by Femtosecond Laser Writing( 2017) Vítor Oliveira Amorim ; João Miguel Maia ; Daniel Alexandre ; Paulo Vicente Marques ; 4287 ; 4382 ; 6407 ; 6596Optical Y-junction power splitters owe their inherent broadband spectral behavior to their design. However, depending on the fabrication technique employed, asymmetries in the junction might arise, perturbing its performance; this is the case in femtosecond laser written Y-junctions where one arm is typically written over the top of the other. In this letter, the spectral behavior of Y-junctions fabricated in fused silica by the femtosecond laser direct writing technique was analyzed and optimized for the first time, to the best of our knowledge. The junction arms output power balance as well as the corresponding spectral flatness between 1300 and 1600 nm is substantially increased by the implementation of an initial separation between the arms at the junction diverging point, enabling the manufacturing of balanced broadband Y-junctions.
-
ItemReal-Time Optical Monitoring of Etching Reaction of Microfluidic Channel Fabricated by Femtosecond Laser Direct Writing( 2017) João Miguel Maia ; Vítor Oliveira Amorim ; Daniel Alexandre ; Paulo Vicente Marques ; 4287 ; 4382 ; 6407 ; 6596Femtosecond laser direct writing is a three dimensional fabrication technique that can be applied to produce integrated optical components with high spatial resolution or microfluidic channels when combined with HF etching. The same fabrication technique can thus be employed to produce monolithic optofluidic devices for sensing applications. One of the most common sensing schemes involves evanescent optical interaction; therefore, the channel must meet some requirements regarding surface roughness, which will depend on the laser writing conditions, as described in this paper. However, of more significance is the distance between waveguiding medium and microfluidic channel that must be accurately defined. This control can be achieved by monitoring the etching reaction of a waveguide grating written a few microns from the channel, as introduced in this paper. In addition to its function as an etching monitor, the grating can also be used as a coarse refractive index sensor device.
-
ItemSpectral Tuning of Long Period Fiber Gratings Fabricated by Femtosecond Laser Micromachining through Thermal Annealing( 2019) Carlos Duarte Viveiros ; José Almeida ; Luís Carlos Coelho ; Helena Soares Vasconcelos ; Vítor Oliveira Amorim ; João Miguel Maia ; Pedro Jorge ; 3565 ; 5256 ; 5799 ; 5872 ; 6407 ; 6596 ; 7222A femtosecond laser direct writing system was developed to explore the fabrication of long-period fiber gratings (LPFGs) in SMF28 fibers. The LPFGs, showing the mode LP1,6 at 1500 nm, were exposed to high-temperature annealing up to 950 °C. Modifications in the refractive index (RI) modulation are observed through a blue-shift in the LPFG attenuation bands and above 850 °C, the mode LP1,7 appear at 1600 nm. The wavelength sensitivity to external RI from 1.300 to 1.452 was estimated for both modes before and after annealing. Greater sensitivity was found for the higher order mode in the entire range reaching 2400 nm/RIU around 1.440.
-
ItemTemperature Stability and Spectral Tuning of Long Period Fiber Gratings Fabricated by Femtosecond Laser Direct Writing( 2020) Carlos Duarte Viveiros ; José Almeida ; Luís Carlos Coelho ; Helena Soares Vasconcelos ; João Miguel Maia ; Vítor Oliveira Amorim ; Pedro Jorge ; Paulo Vicente Marques ; 3565 ; 4287 ; 5256 ; 5799 ; 5872 ; 6407 ; 6596 ; 7222Long period fiber gratings (LPFGs) were fabricated in a standard single mode fiber (SMF-28e) through femtosecond (fs) laser direct writing. LPFGs with longer and shorter periods were fabricated, which allows coupling from the fundamental core mode to lower and higher order asymmetric cladding modes (LP1,6 and LP1,12, respectively). For the grating periods of 182.7 and 192.5 µm, it was verified that the LP1,12 mode exhibits a TAP at approximately 1380 and 1448 nm in air and water, respectively. Characterization of the LPFGs subjected to high-temperature thermal treatment was accomplished. Fine-tuning of the resonance band’s position and thermal stability up to 600 °C was shown. The temperature sensitivity was characterized for the gratings with different periods and for different temperature ranges. A maximum sensitivity of -180.73, and 179.29 pm/°C was obtained for the two resonances of the 182.7 µm TAP LPFG, in the range between 250 and 600 °C.